48 research outputs found

    Atmospheric artifacts correction with a covariance-weighted linear model over mountainous regions

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Mitigating the atmospheric phase delay is one of the largest challenges faced by the differential synthetic aperture radar (SAR) interferometry community. Recently, many publications have studied correcting the stratified tropospheric phase delay by assuming a linear model between them and the topography. However, most of these studies have not considered the effect of turbulent atmospheric artifacts when adjusting the linear model to data. In this paper, we present an improved technique that minimizes the influence of the turbulent atmosphere in the model adjustment. In the proposed algorithm, the model is adjusted to the phase differences of pixels instead of using the unwrapped phase of each pixel. In addition, the different phase differences are weighted as a function of its atmospheric phase screen covariance estimated from an empirical variogram to reduce, in the model adjustment, the impact of pixel pairs with a significant turbulent atmosphere. The good performance of the proposed method has been validated with both the simulated and real Sentinel-1A SAR data in the mountainous area of Tenerife island, Spain.Peer ReviewedPostprint (author's final draft

    Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis

    Get PDF
    Correction: vol 7, 13205, 2016, doi:10.1038/ncomms13205Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in Bone-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h(2) = 0.18, P value = 0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data.Peer reviewe

    Monitoring Mining Subsidence Using A Combination of Phase-Stacking and Offset-Tracking Methods

    No full text
    An approach to study the mechanism of mining-induced subsidence, using a combination of phase-stacking and sub-pixel offset-tracking methods, is reported. In this method, land subsidence with a small deformation gradient was calculated using time-series differential interferometric synthetic aperture radar (D-InSAR) data, whereas areas with greater subsidence were calculated by a sub-pixel offset-tracking method. With this approach, time-series data for mining subsidence were derived in Yulin area using 11 TerraSAR-X (TSX) scenes from 13 December 2012 to 2 April 2013. The maximum mining subsidence and velocity values were 4.478 m and 40 mm/day, respectively, which were beyond the monitoring capabilities of D-InSAR and advanced InSAR. The results were compared with the GPS field survey data, and the root mean square errors (RMSE) of the results in the strike and dip directions were 0.16 m and 0.11 m, respectively. Four important results were obtained from the time-series subsidence in this mining area: (1) the mining-induced subsidence entered the residual deformation stage within about 44 days; (2) the advance angle of influence changed from 75.6° to 80.7°; (3) the prediction parameters of mining subsidence; (4) three-dimensional deformation. This method could be used to predict the occurrence of mining accidents and to help in the restoration of the ecological environment after mining activities have ended

    Method Combining Probability Integration Model and a Small Baseline Subset for Time Series Monitoring of Mining Subsidence

    No full text
    Time Series Interferometric Synthetic Aperture Radar (TS-InSAR) has high accuracy for monitoring slow surface subsidence. However, in the case of a large-scale mining subsidence areas, the monitoring capabilities of TS-InSAR are poor, owing to temporal and spatial decorrelation. To monitor mining subsidence effectively, a method known as Probability Integration Model Small Baseline Set (PIM-SBAS) was applied. In this method, mining subsidence with a large deformation gradient was simulated by a PIM. After simulated deformation was transformed into a wrapped phase, the residual wrapped phase was obtained by subtracting the simulated wrapped phase from the actual wrapped phase. SBAS was used to calculate the residual subsidence. Finally, the mining subsidence was determined by adding the simulated deformation to the residual subsidence. The time series subsidence of the Nantun mining area was derived from 10 TerraSAR-X (TSX) images for the period 25 December 2011 to 2 April 2012. The Zouji highway above the 9308 workface was the target for study. The calculated maximum mining subsidence was 860 mm. The maximum subsidence for the Zouji highway was about 145 mm. Compared with the SBAS method, PIM-SBAS alleviates the difficulty of phase unwrapping, and may be used to monitor large-scale mining subsidence

    Deformation Monitoring of Tailings Reservoir Based on Polarimetric Time Series InSAR: Example of Kafang Tailings Reservoir, China

    No full text
    Safe operation of tailings reservoirs is essential to protect downstream life and property, but current monitoring methods are inadequate in scale and refinement, and most reservoirs are built in low coherence areas far from cities. Use of polarization data to monitor deformation may improve area coherence and thus point selection density. With the example of the Kafang tailings reservoir and dual-polarization Sentinel-1 data from 9 August 2020 to 24 May 2021, homogeneous points of different polarization channels were identified with the hypothesis test of the confidence interval method. Results were fused, and BEST, sub-optimum scattering mechanism (SOM), and equal scattering mechanism (ESM) methods were used to optimize phase quality of persistent scatterer (PS) and distributed scatterer (DS) pixels and obtain more detailed deformation information on the area with time series processing. The fusion of homogeneous point sets obtained from different polarization intensity data increased the number of homogeneous points, which was 3.86% and 8.45% higher than that of VH and VV polarization images, respectively. The three polarization optimization methods improved point selection density. Compared with the VV polarization image, the high coherence point density increased by 1.83 (BEST), 3.66 (SOM), and 5.76 (ESM) times, whereas it increased by 1.17 (BEST), 1.84 (SOM), and 2.04 (ESM) times in the tailings reservoir. The consistency and reliability of different methods were good. By comparing the monitoring results of the three methods using polarization data, the hypothesis test of the confidence interval (HTCI) algorithm, and the polarization optimization method will effectively increase the point selection number of the study area, and the ESM method can show the deformation of tailings area more comprehensively. Monitoring indicated deformation of the tailings reservoir tended to diffuse outward from the area with the largest deformation and was relatively stable

    SAR Images Unsupervised Change Detection Based on Combination of Texture Feature Vector with Maximum Entropy Principle

    No full text
    Generally, spatial-contextual information would be used in change detection because there is significant speckle noise in synthetic aperture radar(SAR) images. In this paper, using the rich texture information of SAR images, an unsupervised change detection approach to high-resolution SAR images based on texture feature vector and maximum entropy principle is proposed. The difference image is generated by using the 32-dimensional texture feature vector of gray-level co-occurrence matrix(GLCM). And the automatic threshold is obtained by maximum entropy principle. In this method, the appropriate window size to change detection is 11×11 according to the regression analysis of window size and precision index. The experimental results show that the proposed approach is better could both reduce the influence of speckle noise and improve the detection accuracy of high-resolution SAR image effectively; and it is better than Markov random field

    Monitoring and Analysis of Surface Deformation in Mining Area Based on InSAR and GRACE

    No full text
    To determine the relationship between underground mining, groundwater storage change, and surface deformation, we first used two sets of ENVISAT data and one set of Sentinel-1A data to obtain surface deformation in eastern Xuzhou coalfield based on the temporarily coherent point interferometric synthetic aperture radar (TCPInSAR) technique. By comparison with underground mining activities, it indicated that the surface subsidence is mainly related to mine exploitation and residual subsidence in the goaf, while the surface uplift is mainly related to restoration of the groundwater level. The average groundwater storage change in the eastern Xuzhou coalfield from January 2005 to June 2017 was obtained through the Gravity Recovery and Climate Experiment (GRACE) data, and the results indicated that the groundwater storage changed nonlinearly with time. The reliability of the groundwater monitoring results was qualitatively validated by using measured well data from April 2009 to April 2010. Combining with time of mining and mine closing analysis, groundwater storage change within the research area had a strong correlation with drainage activity of underground mining. An analysis was finally conducted on the surface deformation and the groundwater storage change within the corresponding time. The results indicated that the groundwater storage variation in the research area has a great influence on the surface deformation after the mine closed

    A Spatial-Temporal Adaptive Neighborhood-Based Ratio Approach for Change Detection in SAR Images

    No full text
    The neighborhood-based method was proposed and widely used in the change detection of synthetic aperture radar (SAR) images because the neighborhood information of SAR images is effective to reduce the negative effect of speckle noise. Nevertheless, for the neighborhood-based method, it is unreasonable to use a fixed window size for the entire image because the optimal window size of different pixels in an image is different. Hence, if you let the neighborhood-based method use a large window to significantly suppress noise, it cannot preserve the detail information such as the edge of a changed area. To overcome this drawback, we propose a spatial-temporal adaptive neighborhood-based ratio (STANR) approach for change detection in SAR images. STANR employs heterogeneity to adaptively select the spatial homogeneity neighborhood and uses the temporal adaptive strategy to determine multi-temporal neighborhood windows. Experimental results on two data sets show that STANR can both suppress the negative influence of noise and preserve edge details, and can obtain a better difference image than other state-of-the-art methods

    Surface subsidence monitoring with an improved distributed scatterer interferometric SAR time series method in a filling mining area

    No full text
    Statistically homogeneous pixel (SHP) selection and DS phase optimization are two critical steps in the distributed scatterer interferometric SAR (DS-InSAR) time series method. In this paper, a new algorithm named dynamic hypothesis test of confidence interval (D-HTCI) is proposed, which reduces the wrong selection rate of SHP and increases the number of SHP selections. Using adaptive spatial nonlocal filtering method for DS phase optimization, the phase standard deviation (PSD) and the sum of phase differences (SPD) show that compared with the traditional covariance matrix decomposition method, the optimization quality is improved by 2.1 and 1.8 times, respectively. Combining 24 scenes Sentinel-1A data from September 17, 2017 to July 14, 2018, the method is applied to monitor surface subsidence of the Daizhuang filling mining area (Jining, Shandong, China). The results show that the proposed method has mm-level accuracy for monitoring of surface subsidence in a filling mining area

    An improved neighborhood-based ratio approach for change detection in SAR images

    No full text
    The speckle noise of synthetic aperture radar (SAR) images limits its application in change detection. Compared with improved ratio (IR) and log-ratio (LR) operators, the neighborhood-based ratio (NR) technique can restrain the influence of speckle noise and is more suitable for change detection in SAR images. However, we find three drawbacks of NR by analyzing this method carefully. To overcome these defects, we propose an improved neighborhood-based ratio (INR) approach for change detection in SAR images. INR restructures the NR operator to exploit the neighborhood information more reasonably and is expected to reduce the impact of speckle noise better. IR, LR, mean ratio operator, NR, and INR are tested on two data sets to compare their performances in change detection of SAR images. Experimental results show that the proposed method can obtain better difference image than other state-of-art methods and improve the accuracy of change detection in SAR images effectively
    corecore